Challenges of Embedded Design

It’s obvious that every stage of embedded systems design is important. However, if there’s one area that I found particularly crucial to a successful outcome, it is the PCB design. You can fix bugs and other code issues with a firmware revision, but when PCBs are manufactured, any mistakes will result in substantially costly remedies and reworks. Therefore, you must carefully design and test when designing the PCB for an embedded system. Issues like EMI can be prevented or minimized by implementing strict design rules. Thermal heat points, an issue that can reduce the lifespan of components, can be addressed by running thermal analysis over the PCB layout.

Today’s embedded designs often go beyond the scope of just electronics. You’ll also need to ensure that the design fits perfectly into the enclosure. This calls for an ECAD/MCAD function where designers of both disciplines can collaborate seamlessly in the same workspace and in real-time. It isn’t exaggerating to say that a major part of embedded design success is attributed to using the right PCB design and analysis software. You’ll find OrCAD PCB designer’s features perfectly optimized for designing embedded systems and getting them right the first time. If you’re looking to learn more about how Cadence has the solution for you, talk to us and our team of experts. You can also visit our YouTube channel for videos about PCB design and layout as well as check out what’s new with our suite of design and analysis tools.